
© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 1 of 22 Version 1.0

A Positive View of Negative Testing

Abstract:

A practitioner’s overview of negative testing, dealing with tests designed to make the system fail, and tests that are
designed to exercise functionality that deals with failure. Details the overall aims and management of negative
testing, and describes a variety of techniques used to select, derive and execute negative tests.

Author: James Lyndsay, Workroom Productions Ltd.

James is an independent test strategist, based in London. He's spent more than 10 years in software testing and has
been the principal consultant at Workroom Productions since its formation in 1994. As a consultant, James has
encountered a wide range of working practices, from rapidly evolving Internet start-ups to traditional large-scale
enterprises.

James is a director of The Manual (http://www.the-manual.org/), a not for profit organisation dedicated to gathering
and publishing basic skills.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 2 of 22 Version 1.0

1. Contents
1. Contents ... 2
2. Introduction.. 3
3. Aims of negative testing ... 4
4. The management of negative testing... 5
5. Test selection strategies – and when to stop .. 8
6. Techniques to derive test cases ... 9
7. Semi-scripted testing .. 11
8. Ways of approaching test execution.. 12
9. Diagnosis and logging .. 15
10. Testing functionality that copes with exceptions ... 16
11. Criticisms of Negative Testing.. 18
12. Conclusion ... 19
13. Appendices... 20

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 3 of 22 Version 1.0

2. Introduction
This paper is a practitioner’s overview of negative testing. It is based on experience and observation,
rather than a formal study or a comprehensive survey of existing literature, and its intention is to
provoke thought and discussion, whatever the reader’s level of experience.
Some approaches to testing recommend that the purpose of the test team is to show, to a level of
confidence, that a system works. Negative testing does the opposite; it seeks to show that software is
not working, to dig and probe through the external weaknesses until it finds just the right way of
making a bad situation worse, to hurt the system and watch it heal, or die.
The two approaches are complementary, but have entirely different aims.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 4 of 22 Version 1.0

3. Aims of negative testing
The British Standard definition of negative testing in BS7925-1 [2] is taken from Beizer [3] and defines
Negative Testing as Testing aimed at showing software does not work. This can lead to a range of
complementary and competing aims;

• Discovery of faults that result in significant failures; crashes, corruption and security breaches
• Observation and measurement of a system’s response to external problems
• Exposure of software weakness and potential for exploitation

While a fair definition, it is far from being generally accepted. ‘Negative Testing’ is a term that is re-
defined site-by-site, and sometimes even team-by-team. A common way that practice differs from the
(British Standard) definition is that it includes tests that aim to exercise the functionality that deals with
failure;

• Input validation, rejection and re-requesting functionality (human input and external systems)
• Internal data validation and rejection
• Coping with absent, slow or broken external resources
• Error-handling functionality i.e. messaging, logging, monitoring
• Recovery functionality i.e. fail-over, rollback and restoration

This paper will deal with tests designed to make the system fail, and tests that are designed to exercise
functionality that deals with failure.

Strategic Directions
There are often further aims of negative testing that do
not set the scope of the activity, but nevertheless dictate
the choices made in designing and running the tests.
These can include:

• Prompt exposure of significant faults
• Learning about function through the study of

dysfunction
• Verification (and possible enhancement) of

risk model* used to prioritise testing
• Documentation of common failures,

characteristic symptoms, and running fixes

*See below for further information on risk models

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 5 of 22 Version 1.0

4. The management of negative testing
Testing as a whole is reactive, open-ended, and hard to value before it has been done. Much of the
blame for this can be laid at the door of negative testing – which is why, although it is an integral part
of many different approaches, it is sometimes explicitly excluded from the scope of testing.
The following sections describe a way to budget, plan and support negative testing, and discuss the
ways that scripted and exploratory approaches differ.

4.1. Budgeting and estimation
Estimation is an acquired skill based on a wide range of assessments outside the scope of this paper,
and the process of estimation may be more valuable than the estimate itself. Estimating the time and
money needed for negative testing needs a three-part approach, where each part has its own balance
between planned costs and the potential to invest in new testing when necessary.

4.1.1. Scripted tests and up-front investment
Some negative tests can be derived from formal techniques. These are often scripted and can be
relatively simple to estimate in the usual granular fashion. Your estimates should reflect that ‘negative
testing’ is not a simple, single phase, but spans – and could be included in – a range of activities.
Negative testing can compromise other tests, and may need a separate environment and specialised
support. It can be greatly enhanced by custom tools and testability enhancements, and may need skills
that do not currently exist in your test team. Scripted tests will lead to an understanding of some of
these requirements, and should enable you to consider your investment in extra hardware, licenses,
development and training.

4.1.2. Primary negative testing
This is negative testing that concentrates on failure modes, observation of failure, assessment of the
risk model and finding new, unknown problems. Formal techniques and checklists may allow some
granular estimates, and failure mode analysis can indicate the test lab resources needed. Depending on
planning and budgeting elsewhere in the project, it may be possible to find an overlap with analysis
done for design and unit testing.
A proportion of the estimate will need to be based on the available resource and the expected return –
bearing in mind that if resources are limited, an opportunity taken to do a negative test is an
opportunity lost elsewhere.

4.1.3. Secondary negative testing
This is testing that is found to be necessary after the start of the test cycle, and includes tests to find
failures once a new exploit or weakness has been found, and diagnostic negative tests. You should also
consider contingency for primary negative testing; tests in new areas, and tests in areas with new risks.
Very little of this testing can be pre-planned. Like regression testing and re-testing, risk and available
resource will limit the tests in which you can invest. It may be possible to derive an estimate from prior
projects, or plan for flexibility based on (for example) the bug density found as the project moves on.
On a project with fixed budget or deadlines, these tests will replace others. Working out which tests to
leave out needs some kind of assessment, and you should allow for time and resource to support this.

4.2. Planning
Negative testing does not have a well-defined position in a waterfall or iterative process, and so is
generally not seen as a distinct phase. Rather, it is a way of classifying some tests, and so directing part
of the test effort.
Typically, negative testing is most often used during system and integration testing and is designed and
performed by test professionals within those test teams.
Negative testing is an open-ended activity. As seen in the estimation section above, some elements of
negative testing cannot be planned in any detailed way, but must be approached pro-actively.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 6 of 22 Version 1.0

4.2.1. Activities
Negative testing activities include:

• Formal design and execution of negative tests
• Designing and performing exploratory negative tests
• Assessing the risks and possible exploitations of a weakness
• Diagnostic tests and related problem logging
• Communication within the team of exploits and weakness

4.2.2. Scheduling and staffing
The ability to break software is an important and hard-won skill, and so career testers make the most
effective negative testers. Their skills cannot be well used before the system is integrated into some
sort of working whole, and should be used soon after. However, negative testing has its place in all
phases of a project.
The following table sets out some of the scheduling and staffing considerations, broadly split by phase.
Phase Approach Staffing
Requirements
analysis, system
design and unit
testing

Formal techniques can be used to derive
closed sets of negative tests. These should
match the exception handling and validation
functionality in the code
Analysis to derive the tests can itself expose
important flaws.

Designers and coders of a system will often
arrive at inventive ways of causing a failure,
and can be very effective at spotting
exploitations. However, their understanding
of the strengths of the design may reduce
their ability to spot weaknesses; negative
testing seeks conditions that have not been
considered during design and coding.
Test analysts may provide a valuable service
to designers.

System testing,
integration testing

Execution of scripted tests, and less-scripted
primary and secondary tests
React to weaknesses found
Assess risk and potential for exploitation
Diagnosis

Scripted testing may be done by less
experienced testers and partly automated
Exploratory testing done by experienced
testers

User acceptance
testing, beta testing

Allows fair assessment of user-facing error
messages.
Can reveal up new mis-use cases.
Valuable input to further negative testing,
and can help to improve the test designers’
understanding of failure modes and
weaknesses.
May allow a near-live system to be pushed
beyond its performance limits, or tested for
fail-over or recovery (tests may need to be
scheduled away from general UAT)

Users may find a significant number of
failures as they use the software for the first
time. However, these are not found by
design, and the users will typically not stray
from a working path once it has been found
in UAT.
Restricted use and internal error handling
may reduce opportunity for UAT/beta testers
to observe problems.
Specialist testers needed to put the system
under stress.

4.2.3. Exclusion
Negative testing is sometimes explicitly excluded from unit testing and user acceptance testing.
However, its aims are useful throughout the life of a project, and any exclusion should be based on a
sound assessment of risk and supported by an effective re-assignment of the work. It is all too easy for
contracts and strategies to exclude it in order to shift responsibility, and for planners to ignore it
because it is hard to plan. If it is explicitly excluded, it helps to have some sort of definition that seeks
to limit its open-endedness, as it can become a bucket for all the tests that nobody wants to take
responsibility for.

4.3. Support
Negative testing can be helped by good tools, and can be hindered by a poor political environment.
However, the most important element is to support the task by having appropriate skills within the
team, and encouraging the team and its members to improve those skills.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 7 of 22 Version 1.0

4.3.1. Tester skills and support for ongoing improvement
Although experience is important to negative testing, any test team can get better at negative testing
over time, as members learn about characteristic weaknesses and exploitations, and gain an
understanding of the way that the system works and of the breadth of tests that can be applied. This
improvement needs to be encouraged if it is going to be sustainable. Managers need to take an active
role in enabling the following:

• Skills transfer within the team, particularly the more ‘intuitive’ skills from experienced and
effective testers. Pair-testing allows the skills, models and strategies of ‘intuitive’ testers to be
observed at close hand by other members of the team, who may absorb those skills, or use
them as a basis for further techniques.

• Knowledge transfer within the team, particularly with regard to weakness and exploitations.
• Knowledge transfer into the team from designers and coders regarding the implementation

and architecture of the system
• Use of ideas, perspectives and analogies from outside the project; books, analogies, training

and conferences.

4.3.2. Technical support
Technical support falls into four areas;

• Negative testing, like performance and stress testing, may need its own environment to avoid
compromising other test work

• Tools can make negative testing simpler and faster, and can allow perspectives that would be
impossible without a tool. However, such tools also tend to be custom-built – and budget may
need to be earmarked early in the project

• Testability requirements can also make negative testing much simpler, but it can be hard to
correctly identify those requirements. Requirements definition is helped by an up-front effort,
perhaps concentrating on characteristic failures and instrumentation that would help
identification and diagnosis

• Co-operative support from coders and designers can reveal weaknesses and exploitations that
might not be obvious to a black-box tester

4.3.3. Political support
As testers, we’re professional pedants. We nitpick, find fault, assess the details rather than the vision.
The idea that someone should deliberately spend their time trying to break the system in increasingly
esoteric ways will seem extraordinary to many people outside the test team.
Negative testing needs political support if it is to remain effective and valuable – and many test
managers are already well versed in providing this kind of support. Indeed, some avoid the term
‘negative testing’ entirely, feeling it is too ‘negative’.
Whatever the approach, it is important that the business understands the value of the information
produced by negative testing. Not only are testers often the first customer advocates that actually
experience the integrated, working system, but the specialised skills of negative testing can reveal
flaws that are fatal to a customer relationship, but may be seen only rarely in the rarefied world of
software development.
It is just as important that the testers understand the value that the business places on that information.
This understanding will not only motivate the team, but can help them to refine their test approaches
and make an assessment of the value of faults and related tests. This is an important skill when
choosing the most useful tests in limited timeframes.

4.4. Scripted or exploratory?
Formal techniques for test derivation can be used for negative testing, and are effective during design
and unit testing. However, in later phases, negative testing is reactive, open-ended (see box), and can
be hard to execute (see box). The reductionist approach of most formal techniques can result in a large
number of time-consuming tests, with no real idea of coverage. A significant proportion of negative
testing in these late stages will be semi-scripted or exploratory.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 8 of 22 Version 1.0

5. Test selection strategies – and when to stop
Test selection strategies guide the team in deciding which tests to plan and perform, and which to do
first. Negative testing is open ended, and selection strategies need to deal with the way that one test
may reveal a new set of more important tests. One way to do this is by choosing tests that allow broad
and reliable observation of the system. The following approach is based on this heuristic;

• Test the effectiveness and robustness of the exception handling system early – the results of
later tests will depend on its reliability and accuracy.

• Use a broad set of negative tests to observe the
system from many different perspectives. This
will help you verify and improve the risk model
of the system that you may be using to prioritise
other tests.

• Explore the system, looking for potential
weaknesses. Prioritise test effort to match.

• Prioritise testing based on known exploitations. This can find bugs, or allow increased
confidence that the system is robust. Malicious exploitations, and exploitations that tend to
lead to a crash are good candidates for this early approach.

• Prioritise testing based on known failure modes, particularly those where impact analysis
indicates serious consequences.

• Stray from the path, particularly if testing is going well, and you may expose unconsidered
risks more quickly. Think about all the ways of making a system fail that are not simple paths,
but conditions or conspiring events.

5.1. When to stop
If deadlines and budget have some flexibility, the most obvious approach is to stop testing when you
are no longer finding significant new issues. This assessment should always be backed up with an idea
of how much of the system has been observed under test. You might use requirements-based or
functionality-based measures.
In projects with firm deadlines, the information collected can be used to prioritise tests and justify any
extension that may be required. The information can be given greater value and impact by aiming the
tests at an assessment of failure modes and verification of the risk model.
Because negative testing is open ended, and can decrease coverage, test coverage
(number!done/number!planned) is not a useful way to judge when it is best to stop.

A risk model describes the known and expected product
risks, and may also describe risks to the product. Some
models are formally documented, while others are simply a
shared understanding. The risk model is used to help
design the system to deal with risks, and to help prioritise
testing. One of the significant risks of risk-based testing is
that the risk model itself is wrong, or incomplete.

Negative testing is open-ended
Just as the range of wrong or inappropriate answers is often
much larger than the range of right answers, so the potential
number of negative tests vastly exceeds the number of tests
that look at acceptable input and actions. While it may be
possible to use formal techniques to derive a limited number
of tests to show that functionality works, the number of tests
that could show that it does not is limitless.
Coverage in an open-ended set is hard to establish, as an
upper bound cannot be found. Furthermore, strategies such
as ‘highest risk first’ assume that the highest risk tests are
already known, yet system problems can reveal a need for
new tests that are more important than the existing tests.
Negative testing has the potential to make coverage go down,
as it can produce information about the inadequacy of the
existing test set.
It is possible to use formal techniques to derive some closed
sets of negative tests, particularly for exception handling
functionality.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 9 of 22 Version 1.0

6. Techniques to derive test cases
Negative testing is not a test design technique, but rather an approach or a classification. It is possible
to use many formal test design techniques to derive tests that can be classified as ‘Negative Tests’. This
section details the application of a variety of well-known techniques:

• Boundary Value Analysis and Equivalence Class Partitioning
• State Transition testing
• Test against known constraints
• Failure Mode and Effects analysis
• Concurrency
• Use cases and mis-use cases

6.1. Boundary Value Analysis and Equivalence Class Partitioning
These two techniques are based on input and output data, and an expectation of the system’s behaviour.
Boundary Value Analysis (BVA) examines those data elements that can take a continuous range of
values, using the requirements and design to predict boundaries where the system’s behaviour changes.
The idea is to produce three values – one on the boundary itself, and the other two either side (as close
as quantisation permits). If the boundary is between valid and invalid ranges, the test case that uses the
invalid value will be a negative test – for instance, using 66 in an age field that only accepts values
from 18-65.
Equivalence Class Partitioning (ECP) looks at the range between the boundaries. Each member of a
given equivalence class should, in the context of a known test, make the system do the same thing – so
the tester does not have to test every value in an equivalence class. Ranges of invalid input data can be
seen as negative tests – for instance, an age field may be expected to reject all negative numbers in the
same way.
ECP is commonly extended to include sets of non-continuous values, rather than ranges of continuous
values. Be aware that some inputs may look equivalent, but may actually show very different
behaviour. For example, the input to a simple web form may be rejected if empty or too long, but the
correct combination of control characters may compromise the security of the underlying web server.

6.2. State Transition testing
Given a state transition diagram, or an equivalent understanding, it is straightforward to derive test
cases that explicitly examine whether unreachable states are indeed unreachable. A variation on this
works in the same way as n-switch testing; after a (known) set of transitions, are the unreachable states
still unreachable? Graphing tools, such as Compendium-TA [4], can help you to derive such tests.

6.3. Test against known constraints
Most systems have explicit and implicit restrictions and constraints. Treating these constraints as
requirements (see Robinson+Robinson, [5]) can lead to a variety of negative tests. Examples:

• “The site is designed to be viewed with Internet Explorer 4.5 or later” – a negative test might
use IE 3.0, or Netscape.

• “No more than five users will use the system at the same time” – a negative test might try six,
then eight.

Typically, these tests involve measurement and observation of the system’s behaviour, rather than
direct tests against expectations. This is only to be expected if working outside the system’s operating
parameters, and the observations can lead to an improved understanding of the system.

6.4. Failure Mode and Effects analysis
It is possible to predict a system’s characteristic failures from an analysis of the underlying technology,
the implementation, and known faults. This analysis is the basis for tests that observe the system’s
behaviour under conditions of failure. It is important to capture and document this information –
particularly if they allow troubleshooting on the data or environment. Such documentation is often a
required output of testing for organisations which monitor their systems and have technical experts
available to take action while the system is in use (i.e. banks, phone companies). Alternatively, for

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 10 of 22 Version 1.0

more widely distributed packages, the information
can become part of an FAQ or troubleshooting
guide.
These tests may be impossible to execute without an
effective test harness or application driver. Such
harnesses are often custom-built, and may need to
run with instrumented versions of the code.
However, tools such as Canned HEAT and
Holodeck (both from the Florida Institute of
Technology, [6]) allow generic failures to be
introduced to software running under Windows.

6.4.1. Families of failure
There are a range of sources that can help you develop families of failure modes. Root-cause analysis
on existing faults, system design documentation, knowledge of characteristic problems of the
infrastructure can all help identify failure modes and so provide the source for derived tests. Appendix
II gives a short list and pointers to further resources.

6.5. Concurrency
Testing concurrent use of resources can be a very fruitful way to discover bugs. Initial analysis
involves identification of data, database entities, files, connections and hardware that more than one
process might try to use simultaneously. Simple, custom-built tools can help by allowing the tester to
make use of a resource before the system does, and release it at a time of their choosing. Tests should
also check that the second requestor does eventually get control of the resource. More complex tests
will look at more than two requests, queuing, timeouts and deadlocks

6.6. Use cases and mis-use cases
Use cases, in practice, tend to deal with
‘happy path’ use of the system. Their
coverage of the varieties of bad input,
cycles of rejection and partial transactions
is often sparse. The term ‘mis-use case’,
while not remotely standard, can help to
identify and differentiate these explicitly.
Use cases that exercise these paths can help
to improve the design by illustrating user
activities that are outside the normal range
of expectation, and allow a formal
approach to test selection and coverage.

Some general mis-use cases for a GUI or browser could include the following
actions or variations:

• Field entry: varying order from usual sequence on form
• Re-entry following rejection of input
• Choosing to change existing details
• Use of ‘cancel’
• Use following ‘undo’
• On browsers, navigating using the ‘back’ button, bookmarks etc.
• Starting sequence halfway
• Dropping out of sequence / interaction without completion/logout.

External and Internal Failure
The distinction between external and internal failure is
necessarily subjective. If a system is seen as a unit of
working code, most failures are external, while if a
system is seen as a complex collection of co-dependent
processes, operating system and hardware, the same
failures might be internal. Some test groups class
external failure as failure of a system that is not under
control of the developers, while internal failure is failure
of a system that can be fixed. This reflects the response
rather than the problem.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 11 of 22 Version 1.0

7. Semi-scripted testing
Semi-scripted tests can introduce some of the control of scripted testing, without needing as much
maintenance. They are a fine way of helping the more exploratory parts of negative testing to stay on
track.

7.1. Checklists
Where a fully scripted test may be hard to write and maintain, a checklist can provide a simple way to
control, limit and measure test activity. Such checklists can be maintained more easily, and if stored
centrally can act as the basis for new tests throughout an organisation. Useful checklists for negative
testing include:

• Lists of input that should be tried when checking validation or failure with bad input
• Known exploitation techniques
• Lists of error messages
• Environment / configuration outside constraints
• Steps along a ‘happy path’ and variation
• Harsh but possible sequences – ‘Soap Opera’ tests

7.2. Measurement under controlled circumstances
It is hard to quantitatively define the expected outcome of some tests. Some tests require measurement
and observation of a number of interrelated factors, with no pass/fail decision at the end. In order to get
consistent results – or to measure a degree of inconsistency - it is useful to have a scripted, repeatable
approach. This also allows a baseline; testers can deviate from it and record the changes that they tried.
This approach is particularly suited to failure mode analysis, recovery functionality following system
failure and problem resolution actions from the exception-handling system.

7.3. Scalability
Testing is a predictive activity. It may be necessary to use a small system to predict the behaviour of a
large one, or to predict an existing system’s response to a change in volume. All systems will fail under
some combination of volume or stress, and tests that seek to find the system’s limits by driving it to
failure can be classed as negative tests.
A failure may not be as obvious as a system crash, and
trends in response time and queue length may give an
early warning. Observations made of a test system as
it is driven to failure can help identify problems in a
live system before they become fatal.

Simpler to write than to perform
Negative tests are often simple to write, but hard to do.
This applies particularly to failure modes, concurrency,
and exception handling. This need not be a problem; the
tests have great value as thought experiments for
designers and exploratory testers.
Ensure that such tests have sufficient time and tool
support. Fault injection tools can make impossible tests
practical, and monitoring tools allow problems to be
studied ‘in the wild’ i.e. during a volume test.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 12 of 22 Version 1.0

8. Ways of approaching test execution
Any test has the potential to expose a weakness during execution. It is important that testers can
recognise and exploit these weaknesses – either by adapting the current test, or with a newly designed
test later in the process. Designing negative tests to exploit these observed weaknesses is, in essence,
exploratory testing. This section covers ways that testers can more easily observe weaknesses, and find
effective exploitations.

8.1. Recognise and exploit weaknesses
Finding and exploiting weaknesses is essentially opportunist – and, like all opportunism, can be greatly
helped by preparation, and by being in the right place at the right time. It relies on the tester’s
experience in two areas; observational skills, and knowledge of the underlying technology.

8.1.1. Observational skills
Observational skills help the tester to spot symptoms that indicate an underlying flaw. A slow process,
an extra button press, an inappropriate error message can all indicate that a system has a weakness. To
the experienced tester, a weakness can be suggested by the choices available at points along a path, by
a default value, by a slight change in behaviour where none is necessary.
These symptoms are hard to spot – they may not be noticed, or they may be so common and apparently
insignificant that they are ignored. An effective negative tester makes a broad observation of a wide
range of information, and is able to sift out the symptoms from the noise. In doing this, the tester relies
on the extraordinary power of the human brain to find and match patterns in apparently disorganised
information. This power is enhanced by experience.
Observational skills can be acquired on the job, but are honed by practice and discussion. Presenting
models and trends within the team can both refine a tester’s abilities, and help train other members of
the team.

8.1.2. Knowledge of the underlying technology
Knowledge of the underlying technology (including the system under test) allows the tester to make
use of their observations;

• Propose (and test) an exploitation that opens up the weakness effectively and repeatably
• Identify similar weaknesses and failure modes
• Value the weakness in terms of potential for harm and ease of attack

Using this knowledge well requires a creative approach. An inventive tester may be able to use an
aspect of the system in an entirely unexpected way – and in doing so, circumvent all existing checks
and balances. The knowledge is system dependent, and as such is always acquired while actively
working on the system - although experience may allow some testers to acquire it more quickly. An
ability to draw analogies between testing and other experiences can help to model and communicate
key ideas, and can give the tester a framework for an unfamiliar system.

8.2. Build models of failure, as well as success
A tester can gain insight into the system under test by building simple models. An extension to this is
to try to fit symptoms and weaknesses into the model; modelling the system as it exists, rather than as it
should be. If the system deviates from expectations, change the model so that it fits the behaviour. The
resulting model may have a clear potential for further failure, revealing the exploitation that will open
up the weakness. The approach could be described as exploratory failure mode analysis.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 13 of 22 Version 1.0

Modelling a system that includes potential problems is something that many testers do, and it is one of
the underlying skills of testing ‘intuitively’. The example above is a model of a failing validation
process, but two more general modelling techniques stand out: state transitions, and bug clusters.

8.2.1. State transition – unexpected states and incomplete transitions
A state is characterised by a set of behaviours, and it is possible to model the system’s internal state
machines by observing behaviours that form a set – a different set of behaviours; a new state. Building
a state model can be an effective way to reveal weaknesses. Problems show up when an expected state
does not have the normal set of behaviours: the tester has found a breakdown in the system, or their
model.
The breakdown may be a problem, or may be exploited to reveal a problem; typically, the difference is
caused by an incomplete transition (if the underlying states are implemented poorly), data corruption,
or inconsistency between design and implementation. Problems may not be manifest on the first entry
to a state, but data corruption, in particular, can cause failures to be revealed on subsequent visits to
ostensibly the same state.
Many experienced testers make these observations without consciously making a model, whether they
are doing scripted tests or exploring the system. Indeed, it may be preferable to develop tester skills in
such a way that observation and recognition is done constantly and almost subconsciously, allowing
the tester to concentrate their attention on the task at hand, but able to notice inconsistencies and
possible exploits.

8.2.2. Bug clusters
An underlying problem that is the cause of one error may yet be the cause of many more. Because of
this, faults are not randomly distributed, but fall into families. Such families are sometimes called ‘Bug
Clusters’. (Kim Davis, Robert Sabourin, [7])
Testers should look out for bug clusters when executing and designing negative tests; a model of the
underlying error and its causes may lead the tester to design more tests, with a greater expectation of
finding problems.
Bug clusters can lead to lots of identified bugs, and to a greater understanding of risk and coverage.
They can expose weaknesses in the software development process, and make a persuasive case for
improvements in design and coding practices.

8.2.3. Finding faults without doing more testing
A bug cluster or other model may encourage testers to concentrate on faults they expect – significant or
not. This is often satisfying, but the model itself can hold the key to a faster, cheaper way of finding
remaining faults.

Example thought process (extrapolated from a real test session):
• I am testing functionality that renames a file to the user’s choice of name
• I know that the filename can’t have dots in. If it does, the file vanishes – and so functionality exists to prevent

the user from entering dots
• My initial model is that only those names that contain exclusively alphanumeric characters are passed. Any

non-alphanumeric character causes the rename request to be rejected.
• I paste in a string that contains Hebrew characters, and find that the file is renamed to include the Hebrew

characters. I could log a bug now, but I know there’s more.
• My new model is either:

• Some punctuation (dots) is blocked – but perhaps the system is rejecting invalid characters, rather
than only accepting valid input. Maybe I can find other characters that aren’t alphanumeric, but still
accepted. My next test will explore which other characters may be entered, and I will try : and \, /, ?
and * first because I know that filing systems have problems with these characters. This test may
reveal a weakness that is not important, but easily exploited.

• Although typed punctuation is blocked, pasted punctuation may be passed. Perhaps the system is
rejecting keystrokes, and not checking the input string. I will try to paste in a filename that contains
one or more dots. This test may reveal a weakness that is hard to exploit, but whose consequences
are significant.

• Hebrew is written from right to left. If I can’t show that the fault fits either model above, I might try finding a
model that is affected by this (thanks to Robert Sabourin for pointing this one out!)

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 14 of 22 Version 1.0

Rather than making the faults reveal themselves through failures, it may be possible to take a
systematic approach to finding the errors in the code. In this sense, design and execution of new
negative tests is passed up for a well-aimed review, and the bugs are found with less effort poured into
test execution.

8.3. Intuitive testers: Bloodhounds, breakers and bug hunters
Bloodhounds follow a trail to their quarry. Some testers operate like bloodhounds; they follow a trail
that is almost imperceptible to onlookers – often without knowing precisely what is at the end of their
trail, but sure that there is a problem to be found, out there, somewhere.
Some people break things. Your users will. Feel happy if you have one or two people who break things
on your team (but perhaps don’t feel so happy if you have a team who can’t do anything but break the
system!). These people can find a bug in anything, but without some discipline or skill, they find lots of
non-reproducible bugs, and have difficulty diagnosing the underlying problems.
Bug hunters are experienced testers, able to use a range of tools to separate and diagnose a bug from its
symptoms, untangle interacting bugs, identify problems that are caused by the test environment/data,
reproduce ‘unreproducible’ bugs and a host of other vital, difficult tasks.

8.4. Tool use
Negative test execution can be enhanced by a range of tools. The most effective tools for negative
testing, as for exploratory testing, are perhaps those which give a new perspective of the system; tools
which encourage the testers to ask ‘Why is it doing that?’.
Capture-replay tools have their place – particularly for setting up tests and avoiding manual errors
during repetitive tasks – but negative testing depends on manual observation of the system’s actions,
however automated the test execution.
It can be also useful to capture some perspective of what the tester is doing, so that their actions can be
reviewed after a fault is found. Such a review can allow a problem to be reproduced more easily, but
may also change the tester’s perception of what they were doing. No tool can capture all aspects that
may affect the outcome of an action, but session logs, pair observation, periodic screen-capture tools
(example Spector [8]), the ‘capture’ part of capture-replay tools and video cameras / webcams can all
prove useful. These tools are particularly useful for studying testers who are not part of the regular
team, but who always seem to break a system in the first few minutes of use. For no obvious reason,
this trait is common in managing directors.
Test sessions and session logs (Bach [9], Lyndsay [10]) have a part to play in managing the scope and
duration of exploratory testing, and are useful tools to direct the efforts of bloodhounds and breakers.
It is also useful to have some sort of tool that can look at the underlying data – and ideally, compare
‘before’ and ‘after’ snapshots. This is often the only way to directly discover data corruption,
particularly if the data corruption is happening in an unexpected location. Although such tools tend to
be custom-built, something that can take a snapshot of part of a database or the environmental variables
can be very valuable. It may also be useful to have access to a debugger, to allow some kind of
inspection of memory and internally held variables.
System inspectors, such as network, CPU, and memory monitors, can give an early warning of failure,
and so help in designing and aiming negative tests. The unit test process may have generated
customised tools that act as a reversed test harness; they watch the system under test.
Fault injection tools can cause the system to react as if an external failure has just happened, allowing
testers to explore circumstances under which the system should fail, or handle failure. Custom tools or
code intervention tend to have fixed capabilities, but newer tools such as Holodeck and Canned Heat
[6] generically manipulate the system’s environment.
A tester needs to be able to recognise a working state. This needs tools to look at internal aspects of the
system, and observation skills to spot weaknesses that perhaps did not exist before the return to a
working state. The tester’s exploratory, observational skills will be vital, even when executing a
scripted test.
A tool to refresh the system after a test is particularly important for negative testing, where failures can
leave the system in a compromised state. The more frequently the test environment is refreshed, the
more reliable the test results and diagnosis. This must be balanced against the reduced opportunity to
observe problems from previous tests.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 15 of 22 Version 1.0

9. Diagnosis and logging
Making a well-supported model of a failing system leads directly to a diagnosis of that failure, and
most diagnostic testing involves some degree of negative, exploratory work. However, as failures
found during negative testing can be particularly hard to diagnose, diagnostic action may not always be
appropriate.

9.1. Diagnosis
Testers should be aware, particularly when using a known exploitation, of well-trodden paths; if the
system under test exhibits a generic failure under well-known circumstances, it may be more
productive to note the weakness and its likely consequence than to follow the generic failure to its
bitter end. Consider the cost of diagnosis in terms of missed opportunities; with fixed deadlines, a four-
hour diagnosis can mean that you lose four hours testing, and the corresponding potential to find new
bugs.
Some weaknesses enable malicious action or security breaches. However, not all flaws expose the
system in this way. In practice, users often feel that they share in some of the blame for a problem that
is caused by actions that seem irresponsible; depending on the state and use of the product, there may
be more important work to do than to prevent users shooting themselves in the foot.
Catastrophic failures can cause a system crash that leaves no usable information about how or why the
crash happened. If the problem is not reliably reproducible, it may be helpful to record as much
information as possible about each occurrence, including timestamp and system conditions. This can
help assess the severity of the problem, and may help identify patterns that lead to a possible cause.

9.2. Logging
Although it is common practice to develop models of the way the system is failing, it is a poor idea to
state these models as if they were facts. The model remains a model, and however useful it has been for
finding further problems, may not reflect the true nature of the system.
Some projects have a policy of developing an operations manual during testing, to help the operators of
the live system diagnose and possibly fix problems. This manual is jointly developed with the design
and coding teams, particularly those who have been involved in fixing problems and tuning the testing
environments. Logged bugs from negative testing will be the source for much of this document.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 16 of 22 Version 1.0

10. Testing functionality that copes with exceptions
Handling exceptions well takes a great deal of code – and the proportion of exception-handling code
generally increases with system maturity and stability. The exception-handling system can itself be a
dense source of bugs, and those bugs may be hard to spot. See Appendix I for details.
A typical model covers detection, notification, handling the exception and returning control to a
working state:

Information

Control

Source

Alert Handle ReturnDetect

User/ operator

Log

Terminate

Data, states

Requesting /
failing process

Note that this may be a looping or recursive process; the handle and return steps may return control to
the failing process, the requesting process, or terminate at a range of levels.

10.1. Exception detection
A system will detect and handle many more exceptions than the user ever gets to see. Formal
techniques, particularly Failure Mode and Effects analysis, will help to identify these exceptions.
Exception detection is an important part of unit testing, and is greatly helped by test harnesses. It is
harder to do well at a later stage with an integrated system. When designing tests, it is worth bearing in
mind that:

• The problem may be detected well after the problem has happened
• Some problems that are detected as an absence of resource may be mis-identifying a delay in

response from that resource – further functionality may be required to measure time taken for
a response.

10.2. Alerts and logging
Information about a detected exception can be sent to many places, and may be stored for later use;

Stored

External
Internal

Transient

Alert

operator
message

user message

log notify failing
resource

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 17 of 22 Version 1.0

Many systems have generic routines to enable the information to flow, and generalised test cases can
be derived using formal techniques. Test designers should be aware of common failings (Appendix I).
It can be useful to extract the external error messages from the central store, or (if hard-coded) from the
code. This will give an insight into the scope of the error-messaging system, and help assess coverage.

10.3. Problem resolution
A problem can be resolved in many ways, and tests need to reflect the specific solution implemented.
Tests should be structured to allow observation of
other processes and their reaction to any resolution.
Note that the resolution can cause further rejections.
When deriving tests that cover successive rejections,
modelling this aspect of the system as a state machine
can be useful.
Some problems can only be resolved by system
recovery. Robustness is crucial, and if a decision is
made to exclude negative testing from a phase, it is
important to consider recovery functionality
separately, from a point of view of business risk.

10.4. Return to a controlled state
It is hard to know how much needs to be done to get a system back on track, and this makes it hard to
design and code functionality to do it well. It also means that it is hard to test. While it is possible to
script tests that check that a system has done all it was meant to, this is only half of the story. Failure to
return to a working state may be revealed by intermittent or non-reproducible failures, and may only be
shown much later than the original error.

10.5. Unscripted testing of an exception handling system
Negative testing exercises the exception handling system, and testers should have a good opportunity
to observe weaknesses without actually testing the system explicitly. Appendix I contains a short list of
characteristic problems that may allow weakness and exploitation.
However, because the exception handling system perturbs the system under test, it can also be a good
tool to open the opportunity for an exploitation. For instance, as a response to bad input, the exception
handling system may generate a modal dialogue preventing further input – but if the dialogue is closed
or bypassed, it may be possible to pass that input into the system.
Whittaker’s How to Break Software [11] gives succinct and practical advice, and it is not the purpose
of this paper to paraphrase the excellent information in that source.

Recovery Functionality
Some problem resolutions invoke functionality that
enables the system to avoid or recover from
catastrophic failure. Examples include:

• Fail-over
• Restart following failure
• Restore from backup
• Rollback

These resolutions may be part of a well-specified
process and often involve skilled diagnosis and manual
intervention.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 18 of 22 Version 1.0

11. Criticisms of Negative Testing
Negative testing comes in for a lot of flack. It is questioned, excluded and occasionally ridiculed. This
attention and frequent self-justification means that it is often well aimed, and an effective way of
finding good bugs. Some frequently heard criticisms are:

11.1. “That’s an acceptable failure”
Counter to received wisdom among testers, some failures are acceptable.
Counter to received wisdom among coders, some unfixable failures are still unacceptable. A failure
that does not have a fix does not become an acceptable failure.
It is best to defer to the customer, then the design. If the requirements state that “It should fail under
those conditions”, they could be changed to “It should fail like this under those conditions”

11.2. “But that would never happen in normal use”
It is hard to make predictions about real-world use, but it is sure that real users will find ways of using
the system that were not originally considered. It is also worth considering the ‘real-world use’ of
malicious users, who understand characteristic weaknesses, and seek to exploit them. Negative testing
can be used to identify these weaknesses, and give confidence that the system can cope with changes in
use. It has been said that testers should spend their time where the users spend their time [Erik
Petersen, STARWest02]. This is not necessarily true for negative testing, particularly when dealing
with the potential for significant failure.
A list of common exploitations can be shared with the people who assess bugs – not only is this easier
to read and digest, but the exposure may result in action to find and fix all bugs that share the same
exploitation, rather than reject them piecemeal. Be careful, however, of calling all bugs that share the
same exploitation ‘duplicates’ – the coders may not fix the bug, but make the system harder to exploit.
This approach keeps the weakness, and a better exploitation may be found. However, it may be the
only solution, particularly in cases where the weakness is inherent in the design, or exists in a third-part
product.

11.3. “Don’t the other tests do that?”
Most tests that look at input and output are weak tests. Their success is based on the output fitting some
criteria of correctness. A stronger test would want to check that all of the right results have been
returned, none of the returned results are wrong, and that nothing unexpected has changed. Negative
testing can be strong, compared to weak functional testing, and can spot problems that would be missed
by simply checking the functionality.

11.4. “Why find a problem we can’t fix?”
Negative testing discovers errors outside ‘code’ – design, other components, even other hardware.
Why go after errors in stuff we can’t fix? Because we are customer advocates, not coders. We want to
know when our paymasters will have a bad day – not when we have made a mistake. Maybe there is an
area we need to look at harder, maybe there is a complexity we have missed, maybe someone else has
made a mistake (unthinkable!).
Any fault found, regardless of ownership, gives us valuable information about the experience the users
will have using our product. Whether it is our fault or not, we would prefer the customer not to
experience crashes, data loss, corruption, security breaches – and negative testing can help us discover
areas where we could improve their experience; failing more gracefully, giving more information,
allowing a ‘safe’ option. This may increase the complexity of our product – but it may also be an
opportunity to add business value.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 19 of 22 Version 1.0

12. Conclusion
The following statements summarise the author’s experience of negative testing.

• Negative testing is a core skill of experienced testers, and requires an opportunist, exploratory
approach to get the best value from the time spent.

• Negative testing can not only find significant failures, but can produce invaluable strategic
information about the risk model underlying testing, and allow overall confidence in the
quality of the system. However, it can reveal fundamental flaws in the project, as well as the
product.

• Negative testing is open-ended and hard to plan granularly. It needs to be managed
proactively rather than over planned.

• Although negative testing is a powerful and effective approach, it is also a hard-to-manage
task that has the potential to produce unwelcome information. Attempts to ignore or exclude
negative testing may need to be robustly opposed.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 20 of 22 Version 1.0

13. Appendices

13.1. Appendix I: Characteristic exception handling failures
The following examples may help to identify possible tests;

• A single fault can trigger many failures, particularly when processing a large amount of
repeating data. Example; a switch re-configuration causes all records of phone calls to be
improperly formatted – now the system will pass all calls through non-optimised error-
handling routines, and write details to a log. Handling the volume of problems can cause the
system to slow, and cause its storage to fill. This may, in turn, cause further errors, and the
problem can accelerate.

• If an exception is not detected, the system will carry on as if no problem has been found. This
can often lead to problems at an Operating System level, as requests are made that cannot be
fulfilled.

• If an exception is detected, but the message detailing that information is lost or delayed, the
system may carry on as if no problem has been found. This can often lead to worse problems.

• When asking a user for a corrected input, the system may block further activity. Systems can
get stuck in this state, and may also restrict valid activity, such as screen re-draws and other
background tasks. This problem can also be influenced by handling control to another process
(a screen-saver, say) while in a restricted state.

• Simple logging mechanisms may not scale, introducing problems of concurrency, disk space
or resource hogging.

• If a great many messages are sent to an observer or log, they may be ignored (so many that the
problem becomes expected) or obscured (one important message is hard to spot in many
irrelevant ones).

• Coders often write code to act on known error conditions. An unrecognised error condition
may slip through undetected. With input validation, if the code excludes only known input
errors, an invalid entry that is not recognised may slip through. It is better practice to exclude
everything that does not fit the expectations of valid input than to exclude everything that fits
expectations of invalid input.

• Poor messaging is a common flaw. Obscure, incomplete, duplicate or ambiguous messages
not only cause problems to users, but also make negative testing harder – and may signify
misunderstandings in the design/coding team or other systematic errors.

• Localisation / internationalisation will require the text of user-facing error messages to be
chosen from an appropriate language set. This may introduce new functionality, and will
certainly be problematic on systems that have hard-coded error messages.

• Generic messaging systems typically store their messages centrally, referring to them by an
identifier. This can lead to problems where the wrong message is sent; either because the data
is corrupt or badly set up, or because the coder has used the wrong identifier. It may be
necessary to test the data itself.

• Resuming control flow from the correct point is not necessarily trivial. It involves passing
complex information, and returning control to a state that can cope, but is not functionally
different from the state that threw the initial error. It may be necessary to carefully check the
state of the system before executing more tests.

• Tidying up after an error is also not trivial. A system may need to resubmit requests, tidy
screen and memory, rollback transactions, restart processes and return control to the right
point, in the right state. If the error has been caused by a bug elsewhere, inconsistent
information may have been passed into storage – and later tests may be compromised.

• Exceptions that are handled uniquely, outside an existing exception-handling process, may be
less reliable, and less tested, than those handles by a centralised, generic process.

• Error messages can have multiple or ill-defined meanings (i.e. poorly maintained legacy
system). A definitive list of errors can reduce the impact of this problem on testing, and
including an unambiguous numeric code can hep testing and support.

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 21 of 22 Version 1.0

13.2. Appendix II: Families of failure
The following list is by no means exhaustive, but may help trigger further ideas about possible failure.

• External resource: unresponsive, slow response, unintelligible / inappropriate response
• Co-operative process failure: particularly intermittent processes, multi-tasking and recursion
• Concurrent use: resource locked, request for lock refused, deadlock, lock response delayed
• Sacrificial processes: processes allowed to fail and recover in a controlled manner
• File system: File cannot be found, opened, read, written to, permissions changed, file system

recognises media error, media removed, media full
• Network: Network down, network busy/slow, transmission segment lost/corrupt/out of

sequence, dialogue between processes interrupted
• Memory: not enough for requested allocation, fragmented
• Limits reached: Queues, licences, threads, connections, array size, resource allocation

Ordered and classified lists of faults at:
Bug Taxonomy and Statistics (2001), B. Beizer, O. Vinter
http://inet.uni2.dk/~vinter/bugtaxst.doc

Testing Computer Software (Second Edition): Appendix: Common Software Errors: Cem Kaner, Jack
Falk, Hung Quoc Nguyen
http://qacity.logigear.com/nr/qacity/documents/common_errors.html

© Workroom Productions Ltd 2003.

Software Testing: Papers

A Positive View of Negative Testing PVoNT.doc

19 March 2003 22 of 22 Version 1.0

13.3. References
[2] BCS SIGIST: Standard Glossary of Testing Terms (British Standard BS 7925-1)
[3] Beizer, Boris. Software Testing Techniques, van Nostrand Reinhold, 1990
[4] Compendium Developments (http://www.compendiumdev.co.uk): Compendium-TA

(http://www.compendium-ta.com)
[5] Robertson + Robertson, Mastering the Requirements Process, Addison-Wesley, 1999
[6] Florida Institute of Technology, Canned HEAT and Holodeck,

http://www.se.fit.edu/projects/CannedHEAT/home.htm and
http://www.se.fit.edu/projects/holodeck/

[7] Kim Davis, Robert Sabourin, Exploring, discovering and exterminating Bug Clusters in Web
Applications, QWE2001

[8] SpectorSoft, Spector, http://www.spectorsoft.com/
[9] Jonathan Bach, Session-Based Test Management, STARWest 2000

http://www.satisfice.com/articles/sbtm.pdf
[10] Lyndsay, Adventures in Session-Based Testing, STARWest 2002, http://www.workroom-

productions.com/papers.html
[11] Whittaker, How to Break software, Addison-Wesley 2002

13.4. Further reading
Whittaker, How to Break software, Addison-Wesley 2002
Kaner, Bach, Pettichord, Lessons Learned in Software Testing, Wiley 2002
Murphy, http://murphy.pescatore.ch/index.php?use=display&id=0 ,
http://www.romankoch.ch/capslock/murphy.htm ,
http://www.lorober.com/Favorites/documents/Murphy.htm

13.5. Thanks
My great thanks to my reviewers, without whose help this paper would be far longer, and much worse:

• Alan Richardson
• Robert Sabourin
• Joanne Webb
• James Bach
• Erik Petersen

