
Building and Handling Exploratory Interfaces

Precis
*Want a tester’s interface to let you explore some code? Want data and mocks set up for you, visibility 

into underlying data, tools to iterate input, alarms for trouble? You do. Find out how to persuade 

LLMs to build exploratory interfaces for you.*

Abstract
LLMs generate great piles of weird code (which can still pass your tests). We now need to work 

through far more code, looking for unfamiliar machine-made problems: We will need a corresponding 

step change in how we look for trouble. In this session, I’ll share my recent approaches and 

experiments in generating ephemeral tools to help me swiftly and usefully explore a delightful open 

source product, FlockXR. 

I’ll share how I’ve asked LLMs to build exploratory interfaces – short-lived generated tools that let me 

explore code behaviour at a unit test level. You’ll play with some of these interfaces on your own 

devices, and I will build new ones in the session so that you can see how it is done.

While playing, you will use parameterised sliders, synchronised generators, dynamic property 

assertions and visual analysis. You will see my approaches to default data and to object creation, to 

working with generated dynamic inputs and alerts for recognisable oddness, how my interfaces 

manage dependencies and how I can capture information about problems.

I’ll share my processes, prompts and libraries. I’ll describe how I use exploratory interfaces on the 

project, the pitfalls and solutions around finding code that fits, and how I wrangle the LLMs towards 

reliable and helpful interfaces.

Key Takeaways
See how to persuade an LLM to build an exploratory interface for code components

Recognise pitfalls and mitigations around dependencies / mocks, consumable and configuration 

data, and oracles

Access an open-source library with process and prompts to build your own


